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Abstract

We introduce a newly developed code for the modeling of structural and pollution

evolution of Saturn’s rings, in tandem, due to the ballistic transport of micrometeorite

impact ejecta. Previous work was restricted to the study of the exchange of mass and

angular momentum, and material properties separately, but provided a solid framework

for future development that could be advanced once we achieved a better understand-

ing of key ring physical properties such as opacity, and improved processing power

became available. Our result is a robust code capable of modeling both structural and

compositional changes over time on both local and global scales...

1 Introduction

The rings’ huge surface area-to-mass ratio ensure that they are particularly susceptible effects

of extrinsic meteoroid bombardment. Until recently, the mass of Saturn’s rings was thought

to be on the order of a Mimas mass (although see Charnoz et al., 2009). Indeed, directly

comparing the ratio for Saturn’s rings to that of Mimas1, one finds that the rings’ surface

area exceeds that of the latter by ∼ 3 × 104. A consequence of this is that hypervelocity

micrometeoroid impacts on the rings, depending on the micrometeoroid flux (see below),

likely erode them on timescales much shorter than their presumed age. Furthermore, these

impacts can produce a large amount of particulate ejecta, the vast majority of which is

ejected at speeds much less than the velocity needed to escape the rings. As a result, a

copious exchange of ejecta between different ring regions can occur which can lead to changes

1For purpose of this illustration, all the mass is assumed to be in the B ring where the optical depth

τ ≥ 1. The mass of Mimas is ∼ 4 × 1022 g.
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in ring structure and composition on both local and global scales (Durisen et al., 1989; Cuzzi

and Estrada, 1998; Charnoz et al., 2009). This process by which the rings evolve subsequent

to meteoroid bombardment is referred to as “ballistic transport” of impact ejecta (Ip, 1983;

Lissauer, 1984; Durisen, 1984a,b).

In a series of papers, Durisen and colleagues (Durisen et al., 1989; 1992; 1996) developed

the first rigorous dynamical code to model ring structural evolution due to meteroid bom-

bardment and ballistic transport and found that the influence of these processes on the rings

could explain certain aspects of ring structure such as the fairly abrupt inner edges of the A

and B rings, including the very similar “ramp” features which connect them to the Cassini

division and C ring (see Figure 1), respectively given evolutionary times of ∼ 100 “gross

erosion” times (∼ 108 years). A gross erosion time tG is defined as the time a reference ring

annulus would disappear due to ejected material if nothing returned. In a complimentary

study, Cuzzi and Estrada (1998) developed a model for the evolution of composition in which

they calculated how both intrinsic and extrinsic non-icy materials build up over time and

how these impurities are redistributed over the rings. Applying a radiative transfer model

to the results of their “pollution transport” simulations, coupled with observations of the

rings in three visible wavelengths (Estrada and Cuzzi, 1996; also see Estrada et al., 2003),

Estrada and Cuzzi found that they could simultaneously explain both the Cring/Cassini

division versus A ring/B ring albedo and color dichotomy and the form and shape of the

radial variation of color across the C ring/B ring transition on a similar timescale to Durisen

and colleagues. A full review of previous work on the subject of ballistic transport can be

found in Charnoz et al. (2009).
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The impact ejecta mass yield from an extrinsic micrometeoroid collision with a ring

particle that is not disrupted is thrown predominantly in the prograde orbital direction. This

result arises naturally from consideration of impact geometries and probabilities which are

azimuthally averaged over the rings (Cuzzi and Durisen, 1990). In addition to mass, ejecta

carry away with them angular momentum. Since most of the ejecta from a non-disruptive

(cratering) impact are prograde, they tend to reimpact the rings at outer locations where the

specific angular momentum of ring material is larger. The net result is to decrease angular

momentum at the secondary impact location leading to radial inward drift. On the other

hand, an impact that leads to complete disruption of the target ring particle into several

fragments would likely produce the opposite effect because it is reasonable to assume that

such a catastrophic collision is more likely to result in a retrograde distribution with lower

ejecta velocities than their prograde counterparts. In either case, the structure of the rings

(i.e., optical depth τ and surface density σ) will have an effect on the rate of material drift

because the probability of ejecta absorption, which determines the actual mass that hits

the rings as opposed to merely passing through them, not only depends on the azimuthally

averaged angular aberrations over the orbit of the ring material, as well as weakly on the

local τ , but its angular momentum depends linearly on σ (Cuzzi and Durisen, 1990; Cuzzi

and Estrada, 1998; Charnoz et al., 2009).

Two key quantities that make it possible for their to be significant structural and compo-

sitional evolution of the rings over short and long timescales are the impact yield Y and the

micrometeoroid flux σ̇e. Both Y and σ̇e are essential for providing more accurate age-dating

of specific ring features, as well as the overall age of the rings themselves. The yield of a
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single impact, which is defined as the ratio of ejecta mass to impactor mass, can be quite

large depending on several factors (e.g., see Durisen, 1984b). The ejecta velocity distribu-

tion of an impact depends on the hardness of the target and the angle of impact (Cuzzi and

Durisen, 1990). If the target is powdery, yields can be in excess of ∼ 105 − 106 for cratering

(non-disruptive) impacts at normal incidence (e.g., Burns et al., 1984), while micrometer-

sized particles impacting into granular surfaces can have yields as small as ∼ 103 (Vedder,

1972). The ejecta velocities for the bulk material from cratering impacts tend to range from

∼ 1 − 10 m s−1 , much less than the escape velocity from the rings. This means that,

regardless of whether impacts are cratering or disruptive (in this case the yield is effectively

the entire target), one does not need to consider the net mass gain or loss from the rings due

to micrometeoroid bombardment unless one considers very long exposure times (Charnoz et

al., 2009).

Past estimates of the current micrometeoroid flux (which likely was larger in the past)

at Saturn vary slightly (e.g., Morfill et al., 1983; Cuzzi and Estrada, 1998), but all suggest

that the rings would be impacted by close to their own mass (for the Mimas mass estimate)

over the age of the Solar System (Landgraf et al., 2000). These estimates are largely based

on the meteroid mass fluxes measured by the Pioneer and Ulysses spacecraft between 5− 10

AU (see, Cuzzi and Estrada, 1998, Fig. 17). Some hope for improving this estimate has

recently surfaced from Galileo measurements of the flux at Jupiter. Sremčev́ıc et al. (2005)

used an indirect technique to provide an estimate of the mass flux that may be at most off

by a factor of 2 − 3 compared to previous estimates; however, the mass flux at Saturn has

not yet been measured by Cassini allowing a similar study, and thus for now must continue
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to remain uncertain.

For a given meteoroid flux and ring mass, micrometerite impacts on the rings will have

two effects. First, as already pointed out above, they will lead to angular momentum loss

within the rings. For example, it has been estimated that the C ring would be lost to the

planet in ∼ 107−108 years (Cuzzi and Durisen, 1990) if no other mechanism were at work to

sustain it. A similar age for the rings more closely related to ejected material was obtained by

Northrop and Connerney (1987)2. Second, meteoroid material also darkens and “pollutes”

the rings over time which also provides a powerful barometer for ring age. Doyle et al. (1989),

and subsequently Cuzzi and Estrada (1998), using a mass flux from Morfill et al. (1983),

noted that the relatively high albedo of the A and B rings was inconsistent with their having

retained more than a small fraction of primitive, carbonaceous material they would have

accreted over the age of the Solar System. Cuzzi and Estrada (1998) further demonstrated

using their pollution transport model that the relatively small amount of extrinsic darkening

material needed to evolve the inner B ring and the C ring to their current spectral color

would also suggest a geologically young age for the C ring similar to the time it would take

to lose the ring based on angular momentum loss arguments. This would seem to pose a

problem for the possibility that the rings are more massive than previously thought, unless

the C ring we see today is some great grand child of an original ancestor (Charnoz et al.,

2009).

In fact the C ring provides a fertile ground for ballistic transport modeling because, al-

though most of the structure in the C ring remains unexplained, there are clear examples of

2It should be noted that resonant interactions with nearby ring-moons can also lead to significant angular

momentum loss (e.g., Goldreich and Tremaine, 1982; Esposito, 1987; Poulet and Sicardy, 2001).
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ballistic transport signatures to be seen. In Figure 1, we can see the sharp inner edge of

the B ring that was found to be maintained by a balance between ballistic transport, which

tends to sharpen low optical depth-to-high optical depth transitions, versus the broadening

effect that results from viscous transport (Durisen et al., 1992). Likewise, these workers also

found, using a prograde ejecta distribution (Cuzzi and Durisen, 1990), that the adjoining

ramp structure on the low optical depth side of the ring edge inevitably came about due to

advective effects. Just as representative are the shapes of the C ring plateau peaks. Pro-

grade ejected material leads in inward radial drift at the location where they land. Material

drifts more quickly in low optical depth regions. This means that when a plateau is encoun-

tered with relatively higher optical depth, material will begin to “pile up”, which leads to a

sharpening of the plateau outer edge as is observed in Figure 1. A region that is dominated

by retrograde ejected material would exhibit outward radial drift, and thus sharpening of a

plateau’s inner edge, which is also observed in Figure 1. Interestingly, there appears to be

some symmetry about the ????? ringlet at around 87500 km. Whether this is coincidence

or not is unclear. It may be that a combination of dominant C ring particle size, and impact

velocities may lead to a transition between primarily cratering impacts versus impacts that

are fragmentative (Estrada and Durisen, 2011).

Despite these clear examples of meteoroid bombardment and ballistic transport, the

plateaus, as well as the undulating structure in the inner C ring which is not associated with

any known resonances, remain enigmatic. How do these plateaus form and for how long do

they persist? If the rings of Saturn are much more massive than previously thought, then

high optical depth regions (i.e., the B ring where most of this extra mass must be hidden
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[e.g., Charnoz et al., 2009]) should more easily be able to resist pollution from extrinsic

bombarding material. A more massive rings does not necessarily indicate old rings, and

indeed, the C ring is not long-lived. Yet, the most likely time that the main rings formed

would have been at the Late Heavy Bombardment (LHB, ref?), setting up a mismatch

between the age of the main rings, and the age of the C ring.

In this paper, we lay the ground work for more detailed, future modeling of micromete-

oroid bombardment and ballistic transport in planetary rings with the introduction of new

ballistic transport code that is capable of modeling both structure and composition in tan-

dem that is able to model the rings over a broad range of spatial scales, and over both short

and long timescales, and is robust enough that new physics can be readily incorporated into

the code as it becomes available. In Section 2, we describe the development of our combined

structural and compositional code. In Section 3, we present the results of demonstrative

simulations, and finally in Section 4 we present our conclusions and discuss future work.

2 Combined Structural and Compositional Model

2.1 Limitations of Previous Work

Previous studies involving ballistic transport in Saturn’s main rings were limited on two

fronts. From the structural standpoint, solving the ballistic transport equations (see Sec.

2.2.3) can be quite computationally expensive, even with today’s processing abilities. Ballis-

tic transport essentially requires tracking the exchange of material from one location (radial

bin) in the radial range of computation to every other radial location within its maximum
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“throw distance”, which depends on the upper limit of the ejecta velocity distribution. Like-

wise, one must sum up all the contributions to that radial bin from all other radial locations

whose ejecta can reach it. Because this involves integration over multiple variables (e.g.,

angles, velocities, deposition probabilities) at every time step over a potentially large his-

togram of radial bins, comprehensive parameter studies were unattractive, and global scale

calculations intractable.

Another important handicap in previous studies was a lack of adequate data for some

basic ring properties. For example, prior to Cassini, the ring surface density σ(R) had

only been measured in several isolated spots, which were generally associated with spiral

density wave regions. It was then only possible to determine the ring opacity κ(R) =

τ(R)/σ(R) in these discrete locations (e.g., Cuzzi et al., 1984; Lissauer and Cuzzi, 1985).

These estimates were then extended to non-density wave regions, assuming wave regions

were not too different from non-wave regions (e.g., Cuzzi and Estrada, 1998). Because the

ring particle size distribution is well approximated by a power law n(r) ∝ r−3 (where r

is the ring particle radius) in most regions (e.g., Zebker et al., 1985), the opacity depends

primarily on the largest particle size. With these assumptions, Cuzzi and Estrada (1998)

utilized the variance technique of Showalter and Nicholson (1990) to determine the largest

effective radius particle from the Voyager stellar occultation data across a range of ring radii

where no spiral density waves existed. Ultimately, the former authors could only estimate

the spatial variability of κ because of a lack of occultation data in optically thick regions.

The simulations of Durisen et al. adopted the condition τ = σ and thus the opacity was

assumed to be a constant value dependent on some reference value of σ (e.g., σ = 96 g cm−2
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for τ = 1 in the inner B ring, see Cuzzi et al., 1984).

A major limitation of the C ring/inner B ring compositional study of Cuzzi and Estrada

(1998) was the assumption that the underlying ring structure could be kept constant while

the ring composition evolved. These authors assumed this because Durisen et al. (1992) had

found in their structural evolution simulations that constant optical depth regions and inner

sharp edges can remain more or less unchanged over long timescales. As a result, Cuzzi and

Estrada asume that the optical depth and mass surface density were time-independent on

the timescale of compositional evolution. This meant that the cumbersome loss and gain

integrals (see Sec. 2.2.4) that determine the redistribution of mass and angular momentum

due to ballistic transport (which depend on τ) needed only to be done once. At the time

this represented a considerable savings in computational time, but prevented these authors

from discerning, for example, “transient” compositional properties on smaller timescales that

might arise from the structural evolution of materal. As we will show in this paper, transient

structures occur quite readily on relatively short timescales.

Cassini observations is allowing for a more detailed understanding of dynamical ring

properties such as the opacity, surface density, and optical depth which are key quantities in

modeling of ring structure. In particular, analysis of spiral density waves in the rings suggest

that the rings are composed of virtually opaque clumps separated by nearly transparent gaps

which will have consequences for both ring opacity (Sec. 2.2.5) and viscosity (Sec. 2.2.6).

As cassini data continues to be analyzed, we fully expect to integrate these new findings as

they become available to improve our modeling in the future.
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2.2 The Ballistic Transport Code

The ballistic transport code (hereafter BT code) evolves the surface mass density of the

rings σ(R, t) over time, and thus its structure, by solving the system of equations given

below in Sec. 2.2.3. The code further tracks the changes in the fractional mass of extrinsic

(bombarding) material, or pollutant which is assumed to be made up of some fraction of icy

and non-icy constituents, and the rings’ intrinsic material which is assumed to be composed

mostly of water ice mixed with a very small fraction of absorbing material which is different

from the micrometerite impactors. Thus the BT code also simultaneously evolves the bulk

composition of the rings.

In ballistic transport, the two main effects that contribute to the rings’ evolution are

the direct net mass exchange of micrometeoroid impact ejecta between different ring regions

(Ip, 1983), and the differential radial drift of material due to the direct net angular mo-

mentum exchange that comes as a result of the redistribution of impact ejecta (Lissauer,

1984). Secondary effects that are related to the direct deposition of extrinsic material and

its redistribution can also play a role, but are lesser in magnitude and more relevant over

long timescales (Durisen et al., 1996).

The exchanges in mass and angular momentum are determined at any radial location R

in a Lagrangian (i.e., unequally spaced) radial grid by computing (1) the local gain rate in

mass and angular momentum by accounting for all of the incoming ejecta from neighboring

ring regions that are absorbed at R; and, (2) the local loss rate by accounting for the all of

the ejecta created at R, which are ejected at different speeds and in different directions, that

are absorbed at radial locations different from R. The net exchanges at a given R are then

10



determined by differencing the local gains and losses. Advection further modifies the local

surface mass density through the compression or expansion of the Lagrangian cells, while

viscous angular momentum transport provides an additional source of radial drift.

In this section we describe the motivation and mathematical formulation for the BT code.

Much of what is presented below has been described elsewhere in detail (e.g., Durisen et al.,

1989; 1992; 1996; Cuzzi and Estrada, 1998); however, given the mathematical and numerical

focus of this paper, we believe it is justified to repeat some of these previous descriptions

while emphasizing differences in approach and new physics when appropriate.

2.2.1 The impact flux on the rings and definition of the gross erosion time

Of the various input parameters for the modeling of ballistic transport in Saturn’s rings, the

micrometeroid flux remains the most fundamental. For this work, we continue to use the

value of the one-sided, incident flux at infinity σ̇∞ = 4.5 × 10−17 g cm−2 s−1 used in Cuzzi

and Estrada (1998) initially obtained from direct integration over the 1 AU interplanetary

flux models of Grün et al. (1985) and Ip (1984) which was used by Cuzzi and Durisen

(1990), and subequently by Durisen and colleagues in later papers. However, the value

then was arrived at based on a mistaken assertion. Cuzzi and Estrada (1998) reanalyzed

and corrected the estimates from Cuzzi and Durisen (1990) by including Pioneer 10/11 and

Ulysses spacecraft data (see Fig. 17, Cuzzi and Estrada, 1998). These authors found that

the previously assumed value for σ̇∞ remained plausible within a factor of 2 − 3, but for

different reasons than found by previous workers (see Cuzzi and Estrada, 1998 for a detailed

discussion).

11



The two-sided flux of micrometeorites impacting the ring plane at some radial location

R is given by

σ̇im = 2σ̇∞A (τ)FG(R/R0)
−0.8, (1)

where we have accounted for the gravitational focusing of the planet using an asymptotic

relative velocity of 14 km s−1 , which is numerically averaged into a factor FG = 3 at a

reference radius R0 = 1.8 RS (RS = 60330 km is the equitorial radius of Saturn). The flux

at other radii are obtained by the numerical fit (R/R0)
−0.8 to the radial dependence of the

calculated focusing (Durisen et al., 1992). The optical depth dependent function

A (τ) =
[

1 − e−(τ/τs)p]1/p
, (2)

is a parameterization of a numerically determined impact probability that depends on τ

and the various angular aberrations averaged over the orbit of the ring particles (Cuzzi and

Durisen, 1990). Here the fit parameters τs = 0.515 and p = 1.0335.

The actual mass flux of ejected material at reference radius R0 is determined by integra-

tion over the full ejecta yield function Y derived by Cuzzi and Durisen (1990)

σ̇ej(R0) = 2σ̇∞

(

Y

Y0

)
∫

x

∫

Ω

Y (R0, x, Ω) dx dΩ ≈ Y σ̇im(R0), (3)

which depends on ratio of the ejecta to orbital velocities x = vej/vK , and solid angle Ω.

The ejecta distribution function Y contains all the information about impact and escape

probabilities, gravitational focusing, and is normalized to a yield of Y0 = 104 at 14 km s−1
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impact velocity (Lange and Ahrens, 1987). The approximation on the RHS of Eq. (3) is

off by a factor of ∼ 1.2 to the exact calculation obtained through direct integration of Y

(Cuzzi and Estrada, 1998) which we always utilize in the BT code, but we may often use it

for illustrative purposes.

We can now define the ‘gross erosion time’ tG as the fundamental time unit of ballistic

transport

tG =
σ

σ̇ej
≈ σ

Y σ̇im
. (4)

The gross erosion time is defined as the time it would take for a ringlet of surface density

σ to be completely eroded away if no material returned. For example, using the two-sided,

gravitationally focused mass flux in Eq. (1) and an ejecta yield of Y = 104, a reference ring

annulus with σ = 100 g cm−2 would erode away in tG ∼ 106 − 107 years.

We normalize the time units of the BT code to the gross erosion time which allows

our simulations to be independent of specific values of the micrometeroid flux. However,

the actual ages derived from our simulations remain quite uncertain because the absolute

timescale for ring erosion depends on the typical impact yields of ejecta (which depend on

the hardness of the target), and the efficiency with which extrinsic bombarding material

retains its absorptive properties in addition to the weakly constrained micrometeoroid flux

at Saturn.
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2.2.2 Code assumptions

The Saturnian rings are modeled as a Keplerian thin disk which is axially symmetric, with

Saturn taken to be a point mass, and ring self-gravity is ignored. A thin disk is a more

than reasonable assumption because the velocity dispersion c of ring particles typically have

magnitudes of a few millimeters per second (Cuzzi et al., 1984) somewhat akin to the escape

velocity from several-meter-sized particles which are the sizes we consider to be the upper

bound in our assumed particle size distribution. On the other hand, the orbital speeds of

ring particles vK are on the order of tens of kilometers per second. The random motions

due to c lead to a vertical thickness H/R ∼ c/vK << 1, or an H of a few times our largest

particle size.

To consider the disk to be thin with respect to ballistic transport, the radial and vertical

excursions of impact ejecta should be much greater than H . This is easy to see by comparing

typical ejecta velocities to c. Ejecta velocities vej from non-disruptive impacts can vary from

∼ 1 − 100 m s−1 depending on the hardness of the target (e.g., Lange and Ahrens, 1982;

Hartmann, 1985). The inward or outward radial excursion of an ejecta particle, which we

refer to as its ‘throw distance’, is given by |δR| ≈ 4xR (Morfill et al., 1983; Durisen et

al., 1992). Comparing the radial throw distance to the ring vertical thickness, |δR|/H ∼

4xR/R(c/vK) ∼ 4vej/c >> 1. By the same token, the average vertical excursion is |δz| ∼

vejP/2 ∼ πR(vej/vK) so that again we find |δz|/H ∼ πvej/c >> 1.

Our assumption of axial symmetry stems from a comparison of timescales. The typical

orbital period of a ring particle is on the order of tens of hours whereas the relevant timescales

of ballistic transport are on the order of tG ∼ 105 − 107 years. Given this disparity, it
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is reasonable to expect that transient deviations from axial symmetry in underlying ring

structure average out over our the timescales involved in our simulations. We use a variable

timestep in our BT code (Sec. 2.3.3) which could be as short as a few years if the ring

ambient conditions in the simulation call for it. This still equates to . 103 orbits which

should not invalidate out assumption. We leave consideration of the much more complicated

problem of 2-D ballistic transport modeling for future study.

Ring self-gravity is considered to be unimportant with respect to impact ejecta because

the escape velocity from the ring particle size that dominates the ring mass (a few meters) is

much smaller than the typical ejection speeds we use here. The presence of larger moonlets

whose masses are large enough to produce escape velocities on the same order as that of

the typical ejectum are also not considered as important as these objects are sparse and

thus would only effect a very small fraction of ejecta at any given time. With regards to

treating Saturn as a point mass, this is justified based on timescale arguments. Saturn’s non-

sphericity can lead to nodal precession and apsidal motion on a timescales of tens of days in

the C ring, with timescales increasing with radial location (Lissauer and Cuzzi, 1982). Given

the relatively short orbital times of ring particles, ejecta are expected to at most complete

a few orbits before being reabsorbed (Durisen et al., 1989; Cuzzi and Durisen, 1990). Thus,

Saturn’s oblateness should make no difference for particle trajectories.

We assume that all ejecta travel on Keplerian elliptical orbits between their point of

ejection and their point of eventual reabsorbtion, and reabsorbed ejecta do not produce

secondary ejecta distributions. The former assertion is valid from comparison of the typical

ejecta velocities to the local Keplerian orbital velocity. Because vej/vK << 1, the ejecta
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travel on slightly elliptical orbits and cannot escape the system, but rather reimpact the

ring at distances up to the maximum throw distance ∼ 4xmaxR. The latter assertion seems

sensible in that the secondary impacts of ejecta grains with the regoliths of ring particles

would be at up to ∼ 100 m s−1 velocities are likely to be highly inelastic (e.g., Hartmann,

1985; NEWER REFS???). The secondary ejecta velocities are expected to be << vej and

thus the radial excursions are expected to be very small with reimpacts occurring within the

maximum radial bin resolution we use in the BT code (& a few kilometers).

A radiative transfer analog which assumes plane-parallel symmetry is used to compute

the ejecta distribution functions Y (Cuzzi and Durisen, 1990) which are used to calculate the

probabilities that incoming micrometerites, or subsequent incoming or outgoing ejecta will

impact a ring particle as they pass through the rings. The ejecta distribution is direction-

dependent and calculates the total rate of impact ejecta emission or absorption per unit area

for a given local ring region of surface mass density σ and optical depth τ . Furthermore, the

distribution function assumes that impacts are cratering and non-disruptive (see Sec. 2.2.7).

We assume the particle size distribution in the rings to be the same everywhere and

at all times with lower and upper cutoffs r1, r2 of 3 cm and 3 m, respectively. For our

current modeling efforts, this may be a prudent assumption given that the ring particle

size distribution is well approximated by a power law in particle radius r of n(r) ∝ r−3

in most regions (e.g., Zebker et al. 1985). This presumes that some local processes act to

maintain the distribution in spite of the slow losses or gains that are attributable to ballistic

transport. Indeed, the details of the size distribution should be unimportant if the typical

impacts are, as we assume in this paper, cratering and thus leave the target particle intact.
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Under these circumstances, the particle erosion rate only depends on the impact velocity and

micrometeorite influx rate (e.g., Morfill et al., 1983; Durisen et al., 1989). If micrometeroid

impacts were significantly disruptive (leading to catastrophic break-up), our assumption

of constant r(R, t) would likely need to be re-evaluated (see Sec. 2.2.7). The range in

size of the micrometeoroid flux is assumed to be 1 . rim . 100 µm (Cuzzi and Estrada,

1998). Incidentally, this means that radiation and electromagnetic forces have little if any

consequences for the trajectories of ejecta particles which are assumed to be rej & rim (see

Durisen et al., 1989 for a discussion).

The intrinsic composition of the rings is assumed to be primarily water-ice with a small

fraction of spectrally red, absorbing material that is intimately mixed within the ice matrix.

Cuzzi and Estrada (2008) found that Titan tholins provided a good fit to the observations,

however other candidates for the absorbing material have been proposed (e.g., Clark et

al., 2012). The extrinsic, bombarding material is assumed to be composed of a fraction

of a spectrally neutral, darkening agent, and water ice. We typically choose this fraction

fext ∼ 0.5. The BT code tracks the mass fraction fe(R, t) of extrinsic material and assumes

that the remainder (1 − fe) is the admixture of primordial material. Impacting material

is assumed to be retained locally in the ring with an efficiency η, and uniformally mixed

throughout the local mass density σ(R, t). Thus, all the components of composition are

viewed to be volumetrically mixed within the ring particles at all times.

This assumption is more than likely adequate over long timescales (> a few tG). How-

ever, more recent work that models regolith growth in ring particles due to micrometeoroid

bombardment suggests that, for ring particles that initially begin as icy bodies, their re-
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goliths remain more or less constant in the fractional amount of pollutant for timescales

. tG (Elliott and Esposito, 2011). Once the regolith has fully developed, fractional mass

increases linearly with time which is consistent with this work. The work of Elliott and Es-

posito (2011) becomes particularly relevant when considering the study of shorter timescale,

transient features. For example, a recent local event such as the breakup of a small icy

moon may lead to the resetting, locally, of the ballistic transport “clock”, an idea that has

already been suggested to explain variations in brightness in the rings over length scales

of ∼ 1000 − 3000 km that do not seem consistent with ballistic transport acting over long

timescales (Esposito et al., 2005). In future work, we plan to incorporate these effects into

our BT code.

Finally, as has been stated previously (Durisen et al., 1989), the ballistic transport equa-

tions (Sec. 2.2.3) account for conservation of mass and angular momentum, but not for

energy. The reason is that micrometeoroid impacts play little if any role in maintaining

the velocity dispersion in the rings against damping due to collisions as most of the kinetic

energy of the impactors and ejecta are dissipated in relatively short order. To see this, we

consider the impact of a particle of mass mim with a ring particle of mass mp. Through mo-

mentum exchange arguments, the random velocity imparted to a ring particle mp through

the impact with a particle mim is ∆v ∼ µmvim ∼ Y µmvej, where µm is the reduced mass.

The ring particle mp is impacted once every

tim ≈ mimσ

mpσ̇im
≈ µm

σ

σ̇im
= (µmY ) tG. (5)

The rate then at which energy is introduced into the system as a result of these impacts is
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∆v2/tim which can be compared with the rate at which energy is dissipated due to inelastic

collisions (Cuzzi et al., 1979)

∆v2

tim
= µmY

v2
ej

tG
&

c2τΩ(1 − ǫ2)

3π
→ µm & 1.25 × 10−12 c2στ(1 − ǫ2)

x2
. (6)

here, c is the velocity dispersion in the rings, ǫ is the coefficient of restitution and x is the

ratio of impact to Keplerian orbital velocity. In our modeling, we implicitly assume a ring

particle size distribution n(r) ∝ r−3 with am upper size cutoff of rp = 3 m. using this as

the size for mp and c ∼ 0.2 cm s−1 , we consider typical values for our simulations for a C

ring plateau with τ = 0.4, σ = 40 g cm−3 and x = 10−3 one finds that mim & 3(1 − ǫ2)

cm. The mass peak in the interplanetary micrometeorite flux, which is presumed to be

cometary in origin, is around 100 µm (e.g., Grün et al., 1985; Cuzzi and Estrada, 1998),

while Edgeworth-Kuiper belt dust particles have a mass peak between 1− 10 µm (Poppe et

al., 2010; Poppe and Horányi, 2012). Although ring particle collisions are highly inelastic,

coefficients of restitution very close to unity would be needed for impacts by meteorites to

be able to maintain the observed velocity dispersion in the rings. Thus we assume that the

velocity dispersion in the rings is maintained by some other process which we do not model

and, as a consequence, we do not consider conservation of energy in our system of equations

(Sec. 2.2.3).

2.2.3 Working equations

We define the ring system to be thin, and azimuthally symmetric so that the only spatial

variable is the ring semimajor axis R centered on the planet. Given our set of assumptions
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from Sec. 2.2.2, the ring system is described at time any time t by a surface mass density

σ(R, t) and normal optical depth τ(R, t), where the two quantities are related through the

ring opacity κ(R, t) = τ/σ. The opacity may explicitly or implicitly incorporate information

about the ring particle density ρp, and size distribution assumed.

The evolution of the ring system under ballistic transport with time is determined through

solving the following set of equations. The mass continuity equation

∂σ

∂t
+

1

R

∂

∂R
(σRvr) = Γm − Λm + σ̇im, (7)

or, alternatively the areal angular momentum density continuity equation

∂

∂t
(σRvθ) +

1

R

∂

∂R
[R(σRvθvr)] = Γh − Λh + σ̇imRvθ, (8)

follows the local changes in σ and R due to the net loss or gain of ejecta to and from

neighboring ring regions. The RHS of Eq. (7) accounts for the direct mass gains Γm and

losses Λm by integrating the ejecta distributions over the rings taking into account cylindrical

effects, while the RHS of Eq. (8) where vθ = vK is the local Kepler velocity are the angular

momentum loss and gains (see Sec. 2.2.4). The term σ̇im is the impact flux of micrometeorites

on the rings. The divergence of the mass flux caused by the slow radial drift of ring material

brought on by angular momentum transport are accounted for in the 2nd term on the LHS

of (7). The total radial drift velocity vr can have multiple components. Primary is that due

to the ballistic transport mechanism itself
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vball
r =

(

σ
dhc

dR

)−1

[Γh − Λh − hc(Γm − Λm)] , (9)

which can readily be derived from combining Eqns. (7) and (8) for the inviscid case. In (9),

hc = RvK = (GMR)1/2 is the specific angular momentum for circular motion with G the

gravitational constant, and M the mass of the planet. A second component to radial drift

is due to the viscous angular momentum transport

vvisc
r = − 3

σhc

∂

∂R
(hcσν), (10)

where ν(R, t) is the kinematic viscosity (Sec. 2.2.6). Additional contributions to the radial

drift of material that are due to the collective effects of meteoroids such as mass loading

and/or loss of ejecta angular momentum vmasl
r , and torques caused by asymmetric absorbtion

of meteoroid ejecta vtorq
r (Durisen et al., 1996) are also included in the calculation of the total

vr though these effects are secondary, and are more important over long simulations (see Sec.

2.2.8).

Changes in the compositon of the rings is followed using the equations for the evolution

of the surface mass density of the extrinsic and intrinsic components

∂σe

∂t
= ηfextσ̇im + Γm,e − fe(r, t)Λm − 1

R

∂

∂R
(σeRvr) , (11)

∂σi

∂t
= (1 − ηfext)σ̇im + Γm,i − [1 − fe(r, t)]Λm − 1

R

∂

∂R
(σiRvr) , (12)

where the parameter fext is the non-icy fraction of a micrometeroid impactor, and η is
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the efficiency at which the impacting material retains its absorptive properties (Cuzzi and

Estrada, 1998). The gain integrals Γm,e and Γm,i are described in the next section.

2.2.4 Computation of losses and gains

The essence of the ballistic transport process lies in the changes in the local mass surface

density due to the differences between losses and gains of ejecta material at some R, which is

of order ∼ x away from sharp edges, and ∼ x2 at sharp edges, and the order ∼ x2 differences

between the radial velocities vr between neigboring ring regions through the divergence term.

Quite literally ballistic transport depends on differences of small differences between losses

and gains (Durisen et al., 1989). The losses Λ and gains Γ in mass and angular momentum

per unit area per unit time must be computed every time step, and at each radial location

within the ring. The losses in mass and angular momentum must account for the total rate

at which material (and their associated angular momenta) at ring radius R is being ejected

in all possible directions and at all possible speeds to other locations R′ where the ejecta are

reabsorbed:

Λm = R(R, τ)

∫

∞

0

dx

∫ 2π

0

dφ

∫ 1

−1

P(R, R′)f(x, θ, φ) d cos θ, (13)

Λh = hcR(R, τ)

∫

∞

0

dx

∫ 2π

0

dφ

∫ 1

−1

(1 + x cos θ)P(R, R′)f(x, θ, φ) d cos θ. (14)

Here, R gives the total rate of mass ejection at radius R per unit area, and θ and φ are the

angles between the ejecta velocity vector and the unit vector tangent to the ring particle’s

orbit, and the angle made by projection of the ejecta velocity vector onto the plane defined by
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the radial unit vector (pointing away from the planet) and the ring plane normal, respectively.

The function f specifies the distribution of ejecta that escapes R over velocity and solid

angle defined by θ and φ. By definition then, the integral
∫∫∫

f(x, θ, φ) dx dφ d cos θ ≡ 1.

The probability function P is given by Eq. (30) of Durisen et al. (1989)

P(R, R′) =
1 − e−τ ′

z

1 − e−(τz+τ ′

z)
, (15)

where τz and τ ′

z are the optical depths as measured from the angles of incidence relative to

the ring normal at R and R′, respectively (Eq. [29], Durisen et al., 1989). Equation (15)

gives the total probability that the ejected particle will be absorbed at R′ rather than at R.

The corresponding gains in mass and angular momentum per unit area per unit time at

the radial location R are calculated through the integrals Γm and Γh which account for all

the ejecta from neighboring ring regions R′ that can reach R. Because ballistic transport

depends on the small net differences between the losses and gains, Durisen et al. (1989)

argued that the gain integrals should be as closely analgous to Eqns. (13) and (14) as

possible for purposes of numerical accuracy. This was accomplished by relating the radius

of ejection R to all possible radii of absorption R′ by deriving a mathematical description of

the Keplerian elliptical orbit followed by the ejectum R′ = RA(x, θ, φ), where the function

A is given by Eq. (33) of Durisen et al., (1996). Summing up all of the contributions to the

ring annulus 2πR dR from annuli 2πR′ dR′ then leads to the expressions for the mass and

angular momentum gain integrals

Γm =

∫

∞

0

dx

∫ 2π

0

dφ

∫ 1

−1

R(R′, τ ′)A2
P(R′, R)f ′(x, θ, φ) d cos θ, (16)
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Γh =

∫

∞

0

dx

∫ 2π

0

dφ

∫ 1

−1

h′

c(1 + x cos θ)R(R′, τ ′)A2
P(R′, R)f ′(x, θ, φ) d cos θ, (17)

where evaluation of quantities is at the location R′ which is itself evaluated in terms of x,

θ and φ. The fractional mass gain integrals Γm,e and Γm,i incorporate the mass fractions of

extrinsic and intrinsic materials, but are nonetheless similar to Eq. (16)

Γm,e =

∫

∞

0

dx

∫ 2π

0

dφ

∫ 1

−1

fe(R
′, t)R(R′, τ ′)A2

P(R′, R)f ′(x, θ, φ) d cos θ, (18)

with an analgous expression for Γm,i by simply replacing fe(R
′, t) with 1−fe(R

′, t). In Section

2.3.4 we describe our technique for solving these integrals numerically.

With regards to the particle size distribution in the rings, Durisen et al., (1989) originally

employed two different assumptions about n(r) in the hopes that they might bracket the true

particle behavior within the rings. The first was to assume that all ring particles are the same

size at any given distance R, but can differ in particle radius r(R). This led to an additional

continuity equation in terms of particle number density. The second assumption, which

Durisen and colleagues exclusively employed in later papers, and what we assume here is

that of the same n(r) at all R. The primary reason at the time for not modeling a particle size

distribution was computational as it meant that an additional integration parameter would

be introduced in the losses and gains above. With improved computational ability (including

the fact that the BT code is parallelized, Sec. 2.3.4), as well as continuing improvements in

our understanding of processes that affect the evolution of ring particle size in the rings such

as particle-to-particle collisions (REFS), and disruptive impacts (REFS) such an endeavor

is certainly possible. In future work in particular, we plan to include disruptive impacts (see
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Sec. 2.2.7) and thus will include these physics at a later time.

2.2.5 Ring Opacity Models

Prior to Cassini, the surface mass density σ had only been measured in several isolated spots,

which were generally associated with spiral density wave regions. Knowing both the surface

mass density and the optical depth allows one to calculate the ring opacity κ = τ/σ. In the

work of Cuzzi and Estrada (1998), in which they investigated whether pollution transport

alone could explain the detailed shape of the ring color profiles across the rings, only two

such locations were known in C ring: the Maxwell ringlet; and, the Janus 2:1 density wave.

In order to achieve their goal, these authors required an opacity profile with higher radial

resolution3. Given that the ring particle size distribution is best described by a power law in

most regions (see Sec. 2.2.2; Zebker et al., 1985), κ depends primarily on the largest particle

size. Under this assumption, Cuzzi and Estrada (1998, see their Fig. 5) utilized the variance

technique of Showalter and Nicholson (1990), which determines the largest “particle” size

with high radial resolution to determine from the δ-Sco Voyager stellar occultation the largest

effective radius particle reff across a range of ring radii where no spiral density waves existed.

The scatter in their derived κ values, particularly coupled with values inferred by others, led

these authors to adopt very simple κ(R) profiles:

3In contrast, κ never explicitely appears in the simulations of Durisen and colleagues. Rather, these

workers normalize σ such that σ(τ = 1) = 96 g cm−2 so that κ ≈ 0.01 cm2 g−1 everywhere in the rings

(Durisen et al., 1992; 1996).
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κ(R) =







































κ1 R ≤ R1;

κ1 − κ1−κ2

R2−R1

(R − R1) R1 < R < R2;

κ2 R ≥ R2.

, (19)

where κ1 = 0.05, κ2 = 0.009, R1 = 1.5 RS (roughly the base of the C ring ramp, see Fig. 1),

and R2 was modestly varied to different locations in the very inner B ring. The estimated

κ = κ2 for the B ring opacity was actually an average over a range of possible values, due

to its uncertainty as a result of a lack of occultation data in optically thick regions (see Fig.

11 of Showalter and Nicholson 1990).

The ∼ 100 spiral density waves analyzed by Cassini UVIS and VIMS (e.g., Colwell et

al., 2007; Hedman et al., 2007; Nicholson et al., 2008) have greatly improved our knowledge

of key ring dynamical properties such as the optical depth and mass surface density. For

example, these workers find the rings are composed of virtually opaque clumps separated by

nearly transparent gaps. These observations have been attributed to self-gravity wakes which

have been shown numerically (using local N -body simulations) to spontaneously form as a

result of the combined effects of self-gravity and collisional damping of particles (e.g., Salo

1995; Daisaka and Ida 1999; Ohtsuki and Emori 2000). Nicholson et al. (2008) and Colwell

et al. (2008) have exploited this apparent variation to separate the (large and unconstrained)

τ within the wakes from the τ and fractional area of the nearly transparent gaps. These

workers find that for (VIMS) occulations spanning both the A and B rings (11o < B < 51o),

gap optical depths are relatively constant (0.15 < τ < 0.3) wherever wakes exist. Moreover,

these wakes have a nonaxisymmetric structure which must eventually be accounted for in
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our ejecta probability distributions as well as radiative transfer modeling of composition of

the rings and its constituent materials (see Sec. 4).

Analysis of these extensive observations (which also gives the typical pitch angle, height

and spacing to width ratios of the dense wake clumps, e.g., Colwell et al., 2006; 2007) al-

lows one to determine an “autocorrelation length scale” which characterizes the physical

dimensions of contiguous physical material (clumps) blocking the starlight. This scale varies

depending on the viewing geometry, because the clumps are not spherical, thus complicating

the search for an “effective largest particle size” that characterizes the ring opacity κ. How-

ever, by combining results from multiple Cassini UVIS stellar occultations that encompass a

broad range of viewing geometries, the goal is to be able to constrain the absolute physical

dimensions of the self-gravity wakes (Colwell, priv. comm.).

One observation that Cuzzi and Estrada (1998) gleaned from point-by-point inspection

of their derived opacity values in the C ring was that these values indicated a preferential

association of low κ with relatively higher optical depths plateaus, while higher κ were

associated with regions away from plateaus where τ was lower. This was somewhat supported

by comparison, at the time, with Voyager visual and radio wavelength optical depths. If true,

this effectively would say that there is more mass in the plateaus than the simple model in

Eq. (19) would predict. This possibility suggests an alternative model for the ring opacity

that we utilize for this work, namely that the opacity depends on τ (or alternatively, σ).

For models that explore the C ring and inner B ring, we can define the initial values of the

opacity κ(R, 0) = a + b/τ(R, 0), and at all later times through

27



κ(R, t) =
a

2
+

a

2

[

1 +
4b

a2σ(R, t)

]1/2

, (20)

where the fit parameters a = κ1 + (∆κ/∆τ)τ2, b = −(∆κ/∆τ)τ1τ2, ∆κ = κ2 − κ1 and

∆τ = τ2 − τ1. The choices for the κ1,2 and τ1,2 can readily be chosen to be consistent with

the profile given in Eq. (19).

The above formula is heuristic and is simply meant to allow us to associate a certain op-

tical depth with a specific surface mass density, for example, allowing us to model plateaus

that are more massive. This of course provides no information about what the “particle”

properties are within the plateaus which could invalidate this conclusion. Thusfar, prelimi-

nary analyses of the autocorrelation lengths in the rings taken at face value seem to indicate

that they are smaller (and thus the opacity is actually higher) in the plateaus than away

from them in the low-τ regions (Colwell, priv. comm.). However, it is still unclear how

to intepret this observation. It could mean, for example, that the largest particles in the

plateaus may be smaller than the largest particles outside of the plateaus (something that

would likely affect the viscosity there as well). Thus, we employ this model with the noted

caveat until further analyses are conducted.

2.2.6 Viscosity

Apart from the angular momentum transport due to the ballistic transport process, the other

non-Keplerian effect we consider in our model is viscous angular momentum transport. The

inclusion of viscosity ν as a diffusive mechanism is key in counterbalancing the sharpening

effects of ballistic transport, which can be asymptotic especially near sharp edges. Under-
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standing the viscosity in planetary rings continues to be an ongoing process. Well prior to

Cassini, the efforts to quantify both analytically (e.g., Goldreich and Tremaine, 1978) and

numerically (e.g., Wisdom and Tremaine, 1988) ring viscosity assumed ensembles of identi-

cal spheres undergoing ineleastic collisions while orbiting in the gravity field of the planet.

These models assumed low filling factors, particle spins and self-gravity were ignored, and

the coefficient of restitution was velocity independent.

More recently, analyses of Cassini UVIS occultation data have highlighted the “clump-

and-gap” structure (see above) of the rings, with the majority of the ring mass possibly

hiding in the opaque clumps, while the gaps contain a lower τ and perhaps smaller particles

(e.g., Colwell et al. 2007; Nicholson et al. 2008). The observed optical depth is controlled

by the relative abundance of these clumps and gaps, but the ring viscosity is controlled by

the mass and dimension of the clumps and/or large particles. Local N -body simulations

demonstrate that once strong wake structures form, the effective viscosity is dominated by

gravitational torques due to the wake structure, because gravitational scattering by wakes

increases relative random velocities which enhances the local component of the viscosity

(Salo 1995; Daisaka and Ida 1999; Schmidt et al. 2009). Thus we will likely require a more

robust model for the rings’ viscosity that accounts for their wake structure, in which not only

physical collisions (which leads to both local and non-local transport of angular momentum),

but also the effects of mutual gravitational interactions are considered (e.g., Hahn 2008).

One such model is that of Daisaka et al. (2001) which includes all of these physics and is

derived from their local N -body simulations. Daisaka et al. used a limited range of surface

densities σ to find that the dependence of the viscosity on the surface density goes as σ2.
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However, according to more recent dynamical simulations (Stewart et al. 2007; Robbins

et al. 2009), gravity wakes in the A ring behave quite differently than they do in the B

ring: while clump lifetimes are much shorter in the A ring relative to the B ring, clumps

extend further in the radial direction when stretched, and the angle of the wakes relative

to the azimuthal direction has a wider time variation. These differences will clearly affect

the viscosity. However, this endeavor still remains problematic because, e.g., there is still

no clear indication of how the magnitude of the viscosity varies radially at different points

in the rings. N -body simulations indicate the possibility of drastic changes in the viscosity

radially by an order of magnitude difference from 120000 km to 100000 km for the same

value of σ (Stewart, priv. comm.). In order to apply these updated models to our BT code,

we will need a more clear idea of what the relationship between σ and τ with respect to ν,

and over a broad range of surface density values. Work in this area is ongoing.

For this paper, we continue to utilize the radially variable expression for the ring viscosity

used by previous workers (Durisen et al., 1992; 1996; Cuzzi and Estrada, 1998) which is based

on the work of Wisdom and Tremaine (1988). Their calculation includes both local and

nonlocal contributions to the angular momentum flux which is proportional to the viscosity

in steady state. Durisen et al. (1992) provide an analytical fit to the numerical results of

Wisdom and Tremaine (1988) for an ensemble of identical particles of size rp

3ν

Ωr2
p

= 2.5 τ 1.1 +
1.7 τ

0.30 + τ 2
, (21)

which has an accuracy of ± 5 − 10% for 0 ≤ τ ≤ 2 when compared with the numerical

results. A suitable coefficient Ωr2
p/3 was detrmined based on the results of simulations with
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two particle sizes (e.g., Salo, 1991) that showed that the overall spreading rate of particles

is determined by the largest ones. For the r−3 powerlaw that we use, and our fiducial lower

and upper bounds r1 and r2 (Sec. 2.2.2), one finds that the bulk of the mass and 1/3 of the

optical depth are due to particles with radii greater than 64.6 cm (Durisent et al., 1992).

Thus the exact expression for the viscosity we use in the BT code is

ν(R, τ) = 0.51
( r̄p

64.6 cm

)2
(

1.55 RS

R

)3/2 [

1.5(τ/3)1.1 +
(τ/3)

0.30 + (τ/3)2

]

cm2 s−1, (22)

where r̄p = 64.6 cm2 s−1 for the range of particle sizes chosen. Choosing different values

for r̄p, which effectively amounts to changing the particle size distribution upper and lower

bounds, allows us to vary the magnitude of the viscosity in the code. We will refer to this

variation in magnitude for specific model runs through a scaling factor fν which is is unity

for our fiducial parameters. Durisen et al. (1992) found that a steady state edge like that

of the inner B ring can be sustained by a balance between sharpening as a result of BT

with a strongly prograde ejecta distribution versus spreading due to viscous diffusion (using

Eq. [22] for fν = 1) somewhat remarkably for optical depth contrasts between the low- and

high-τ regions that are satisfied at both the inner A and B ring edges.

2.2.7 Ejecta yields and velocity distributions

In this paper, we exclusively use the longitude-averaged angular distribution and ejecta

yield emission rate for non-disruptive impacts derived by Cuzzi and Durisen (1990), which is

strongly biased towards the prograde (sub-Keplerian) direction. Impacts from helicocentric

particles occur preferentially on the leading face of ring particles, and the cratering ejecta,
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which tends to be sprayed opposite to the direction of the impact, emerges with velocities

larger than the local Keplerian orbital velocity. As a result, the ejecta, now on slightly

elliptical, inclined orbits having semimajor axes larger than their radius of ejection, reimpact

the ring plane at a distance generally further away from the central planet than where

they were ejected. Since these prograde-biased ejecta carry a smaller amount of angular

momentum per unit mass than the material where they land, there is a net radial inward

drift of material.

As mentioned in Section 1, the ejecta yield Y from a cratering impact depends on the

hardness of the target as well as the angle of impact. The mass ejecta yields for primarily

silicate material impacting icy particles has typically been taken to be in the range Y ≈

104 − 105. In the work of Cuzzi and Estrada (1998), these values were applied to the results

of Lange and Ahrens (1987) to obtain their adopted value of Y = 3 × 104 at an impact

velocity of 14 km s−1 for their simulations. These authors point out that their adopted

values are scaled from experiments at lower impact velocities, and refer to macroscopic

projectiles hitting solid icy targets, rather than micrometeorites impacting the regolith of

ring particles where particles within the regolith may typically be the same size or not much

bigger than the impactor. Because the problem of ring particle bombardment continues to

be a more complicated process than what laboratory experiments can elucidate, we choose

to use the yield as a variable parameter with a range from ∼ 103 − 106 which covers a full

range from hard to soft, fluffy or porous targets (ANY NEWER STUFF TO REFER TO?)

Our ejecta speeds are paramaterized by the unitless variable x ≡ vej/vK , where vK is the

local circular orbit speed in the plane of the ring, and the ejecta velocities vej can range from
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as small as 1 m s−1 to as high as ∼ 100 m s−1 for silicates (see, e.g., Fig. 3 of Durisen et

al., 1992). The ejecta velocity distribution is given by a pure power law

f(x) =



















x−n xb ≤ x ≤ xt;

0 otherwise.

, (23)

where f(x) dx describes the fraction of ejecta mass having speeds in the interval x to x+dx,

and xb, xt are the adjustable lower and upper bounds of the ejecta distribution. Durisen et

al. (1992) and Cuzzi and Estrada (1998) both adopted a value of n = 13/4 which was a

fit to the high-end ejecta velocities in hard target laboratory data for solid basalt (e.g., see

Burns et al., 1984). In this paper, we only model a pure power law for f(x). Durisen et al.

(1992) looked at both pure power laws as we utilize here, but also looked at a power law

with a “knee” which was considered more applicable to model the hard target, higher-end

speed distribution. If icy ring particles act more like sand, then a pure power law with a

lower effective xt and a slightly less steep slope (n = 3) may be more appropriate. The

main difference between the two distributions that Durisen and colleagues found was that

the pure power law required higher yields to dominate viscous transport, and produced a

steeper steady-state edge.

Finally, because of the improved computational ability of our parallelized BT code, we

can achieve what Durisen et al. (1992) could not, namely to simulate large radial regions

over long periods of time while simultaneously being able to resolve structure for very small

xb. Moreover, the BT code can readily be altered to adopt velocity distributions which

have a more complex behavior. In future papers, we will consider this as well as isotropic
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and retrograde (sub-Keplerian) dominated impact ejecta distributions (see discussion in Sec.

4) which requires that we rerun the models of Cuzzi and Durisen (1990) with altogether

different sets of conditions.

2.2.8 Mass loading and ring torque

In our BT code, we include the direct effects of meteoroids in our simulations of the struc-

tural and compositional evolution on the rings. The direct mass deposition term is already

accounted for in our ballistic transport equations through σ̇im (see, e.g., RHS of Eq. [7]). A

much more important effect than the direct deposition of mass is the changes that occur to

the specific angular momentum h caused by the combination of mass and angular momentum

deposition. An annulus subject to these effects will drift radially adjusting its h to match

that of the local orbital h = hc with drift velocities (Durisen et al., 1996; cf. Eq. [9])

vdir = vtorq + vmasl =

(

σ
dhc

dR

)−1 [(

∂j

∂t

)

dir

− hcσ̇im

]

, (24)

where the first term in the RHS of (24) is the per-unit-area meteoroid angular momentum

deposition rate. If one considers the mass deposition rate alone (second term on the RHS),

the timescale for a ring to be hit by its equivalent mass is given by tmasl = σ/σ̇im = Y tG (cf.

Sec. 2.2.1). A comparable drift time from some radial location R to the central body due to

this term would be ∆R/|vmasl| = (∆R/2R)tmasl. For typical ring parameters, it is clear that

radial drifts due to the mass loading effect alone would cause the C ring and most of the B

ring to be lost to Saturn faster than it would take for the accumulation of enough extrinsic

material to equal the original σ (Durisen et al., 1996).

34



The direct angular momentum deposition rate leads to a net negative torque on the rings.

The reasons for this can be two-fold. The first is that in regions of moderate or low optical

depth, micrometeorites that pas through the ring are not necessarily absorbed. Recall that

the reason that the ejecta flux distribution of Cuzzi and Durisen (1990) is strongly biased in

the prograde direction is due in great part to the aberrations introduced due to the motions

of Saturn and of the orbits of the ring particles. Due to these aberrations the slant path

of the incoming micrometeorites statistically tend to lead to more impacts on the leading

face of orbiting ring particles, and these particles are more completely absorbed. A negative

torque occurs because meteoroids with negative specific angular momentum are preferentially

absorbed, and this would be the case even if the micrometeorite flux were isotropic (Durisen

et al., 1996). This effect does not affect very high optical depth regions because then all

micrometeroites are absorbed. A second reason that can lead to a negative torque is if a

significant amount of the ejecta escape the ring system carrying with them specific angular

momentum. With very large Y , this could be a significant effect, but we do not consider

this possibility currently in our models.

Durisen et al. (1996) used the techniques of Cuzzi and Durisen (1990, e.g., see their Fig.

15) to calculate the drift velocities due to mass loading and asymmetric micrometeoroid

absorption (which causes the negative torque) as functions of optical depth for a broad

range of radii and optical depths. They derived simple analytical functions of R and τ ,

which we utilize in the BT code, that capture the results of their numerical calculations.

The analytical fits to the drift due to direct effects are given by
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vtorq
r (R, τ) = −

[

1.1 × 10−8(R/RS) + 4.0 × 10−8
]

e(−τ/0.28)0.74

cm s−1, (25)

vmasl
r (R, τ) = −1.1 × 10−8(R/RS) + 6.0 × 10−8

τ

(

1 − e−τ/0.47
)0.98

cm s−1. (26)

In these expressions, it is implicitly assume that σ = 96 g cm−2 for τ = 1.

2.3 Numerical Methods

2.3.1 Stepping in time

In the BT code, the ring is divided up into N ‘ringlets’, or annuli with bin centers Rj .

The annuli are treated as Lagrangian cells whose N + 1 edges bj (bj < Rj < bj+1) drift at

velocities due to a combination of the ballistic transport mechanism, and ring viscosity as

given in Eq. (??). Other contributions to the radial drift due to mass loading and/or loss

of ejecta momentum, or radial drifts due to torques that arise as a result of the asymmetric

absorbtion of meteoroids (Durisen et al., 1996) are also included in vr. The main quantities

of interest, the surface density σ, optical depth τ , opacity κ, viscosity ν, and fractional mass

of pollutant fe are evaluated at bin centers which lie midway between the moving bin edges.

Given these quantities at bin center locations Rn
j at time tn we advance the simulation

tn+1 = tn + ∆tn, (27)

using a variable timestep ∆t(t) (see Sec. 2.3.3) as described below.

1. At the beginning of every iteration, we implement a rezoning scheme (Durisen et
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al., 1992) that searches over the radial grid to find annuli that have become narrower, or

wider than preassigned limits. If the condition is found, the narrowest bin is merged with its

smallest neighbor, while the largest bin is split in two. The physical quantities of a merged

or split bin are adjusted accordingly. This is done to ensure that the resolution of the code

remains comparable throught a given simulation.

2. The viscosities νn
j are updated from the last timestep tn using our chosen viscosity

law (see Sec. 2.2.6).

3. The appropriate timestep size ∆tn for the current iteration is determined from the

stability criteria outlined in Sec. 2.3.3.

4. The losses Λn and gains Γn are determined at every Rn
j . As mentioned in Sec. 2.2.4,

our method of integration uses a lookup up table for the current values of the fractional

mass, the optical depth and other quantities that depend on these parameters. Thus prior

to integration, the relevant quantities are interpolated onto a very fine grid. The loss and

gain calculation provides the direct term changes to the ring surface density and fractional

surface mass densities of extrinsic absorbing material σe and intrinsic, icy materials σi at

time tn+1.

5. The drift velocity due to ballistic transport at bin center Rj is calculated from Eq.

(9) using the difference formula

(vball
r )n

j =
2
√

Rj

σn
j

[

Γn
j,h − Λn

j,h −
√

Rj

(

Γn
j,m − Λn

j,m

)

]

. (28)

6. The viscous drift velocity Eq. (10) is calculated at points midway between bin centers

using the differencing
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(vvisc
r )n

j−1/2 = − 3

σ̄n
j−1R̄

n
j−1

(σν
√

R)n
j − (σν

√
R)n

j−1

Rn
j − Rn

j−1

, (29)

where all quantities are evaluated at time tn, and the bar represents an average of the

quantity between bins j and j − 1. The viscous drift velocities are then interpolated to the

true bin edges which generally do not lie midway between bin centers.

7. If mass loading and ring torques are included in the simulation, then these velocities

which depend on τn
j are calculated at bin centers using Eqns. (26) and (25) from Sec. 2.2.8.

8. The total changes due to direct deposition terms to the ring surface mass density

(RHS of Eq. [7]), as well as those to the surface mass densities of extrinsic and intrinsic

materials are calculated using

σn+1
j,dir = σn

j + ∆tn
[

(σ̇im)j + Γn
j,m − Λn

j,m

]

;

(σe)
n+1
j,dir = (fe)

n
j σ

n
j + ∆tn [ηfext(σ̇im)j + ∆σe] ;

(σi)
n+1
j,dir =

[

1 − (fe)
n
j

]

σn
j + ∆tn [(1 − ηfext) (σ̇im)j + ∆σi]

, (30)

where ∆σe and ∆σi represent the integrals on RHS of Eqns. (11) and (12), respectively. The

new fractional mass due only to direct terms is then calculated from (fe)
n+1
j,dir = (σe)

n+1
j,dir/σ

n+1
j,dir.

9. Bin-centered velocity contributions to the drift velocity vr are interpolated to bin

edges, and then combined to evolve bin edges to their new tn+1 positions:

bn+1
j = bn

j + ∆tn(vr)
n
j . (31)

The new bin centers are then taken to be midway between bin edges Rn+1
j = (bn+1

j+1 +bn+1
j )/2.
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10. The divergence term contribution to the surface mass density on the LHS of Eq. (7)

then is calculated from

σn+1
j = σn+1

j,dir

An
j

An+1
j

, (32)

where An
j and An+1

j are the computed areas of the annuli j at times tn and tn+1. The inward

(or outward) drift of pollutant is then taken into account by the same technique. Alterna-

tively, if we only model the evolution of composition while keeping the ring structure fixed

(as in Cuzzi and Estrada, 1998) we solve the divergence term using the method described in

Sec. 2.3.2.

11. The optical depths τn+1
j are calculated using the new values of the ring surface mass

density and our chosen model for the opacity which can itself depend on the optical depth

or surface density (see Sec. ???).

2.3.2 Tracking material of different composition exclusively

The direct term in the calculation of the fractional mass evolution is given by Equations

(11) and (12), and are valid whether the underlying ring structure is evolving or not. The

divergence term in these equations accounts for the ejected material from a given ring annulus

that may be replaced by either inward or outward drifting material (e.g., Lissauer 1984;

Durisen et al., 1989;1992). In the BT code, we allow that the outward (inward) thrown

material may be different from the material upon which it lands, or from the material which

replaces it that is drifting inward (outward).

We are most interested in modeling the evolution of both structure and composition in
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tandem; however, for rubustness we would like our code to be able to explore cases in which

only composition is allowed to change with time while the rings’ structure remains steady

state (e.g., as was the case for Cuzzi and Estrada, 1998). The technique we use to solve

the divergence term though only works when the Lagrangian bins are allowed to evolve with

time (due to the combined vr). Thus we must impliment a separate subroutine to calculate

the divergence term for the surface mass densities of the extrinsic and intrinsic materials

that is applicable when bin centers and edges remain fixed.

In the case of only compositional evolution, the radial drift of material at each time step

is determined by solving the equation

∂q

∂t
= − 1

R

∂

∂R
(Rqvr) = −F

R
− ∂F

∂R
, (33)

where q = feσ = σe, and F = qvr. Equation (33) is solved using a Two-Step Lax-Wendroff

method (Press et al., 1992) which is second order accurate in time. Normally, spatial bins in

the BT code are Lagrangian annuli whose edges move at different velocities, meaning our grid

spacing is always unequal. Although this is not an issue when we only model compositional

evolution (bin spacing can be the same everywhere), we derive differencing formulae below

so that they can be applicable to unequal spacing (and thus an evolving grid) as a means

of comparison by using the Lagrange interpolation formula to find the proper differencing

expression for the derivative ∂F/∂R. The Lagrange interpolation formula for a function

F (R) defined on a finite grid of points Ri can be written as

F (R) =

NL
∑

i=0

λ(R)Fi

(R − Ri)λ′(Ri)
, (34)
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where λ(R) = (R − R0)(R − R1)...(R − RNL
) and the intervals Ri+1 − Ri need not be

equally spaced, and λ′ is its derivative evaluated at Ri. We find the three point differencing

formula (NL = 2) centered about the point Rj , and then take the derivative with respect to

R. Evaluating this expression at Rj then gives the appropriate differencing formula on the

interval [Rj−1, Rj+1].

We define the flux terms F = qvr at the intermediate timestep n+1/2 and grid positions

j ± 1/2 using a Lax scheme:

q
n+1/2
j±1/2 =

1

2

(

qn
j + qn

j±1

)

− ∆t

2

F n
j±1 + F n

j

Rj±1 + Rj
∓ ∆t

2h±

(

F n
j±1 − F n

j

)

, (35)

where h+ = Rj+1 − Rj and h− = Rj − Rj−1. The above expressions are then substituted

into the properly centered equation

qn+1
j = qn

j − ∆t
(qvr)

n+1/2
j+1/2 + (qvr)

n+1/2
j−1/2

2Rj

− ∆t

[

h2
−
(qvr)

n+1/2
j+1/2 − h2

+(qvr)
n+1/2
j−1/2

h+h−(h+ + h−)

]

. (36)

With a minor amount of algebra, Equation (36) takes the numerical form

qn+1
j = −α+(vr)

n+1/2
j+1/2

(

1 − β+(vr)
n
j+1

)

qn
j+1 +

[

1 − α+(vr)
n+1/2
j+1/2

(

1 + β−(vr)
n
j

)

+ α−(vr)
n+1/2
j−1/2

(

1 − γ+(vr)
n
j

)

]

qn
j +

α−(vr)
n+1/2
j−1/2

(

1 + γ−(vr)
n
j−1

)

qn
j−1

, (37)

where the parameters α±, β±, γ± are given by
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α± =
∆t

2

(

h2
+ + h2

−

h+h−(h+ + h−)
± 1

2Rj

)

β± =
∆t

h+

(

1 ± h+

Rj+1 + Rj

)

, γ± =
∆t

h−

(

1 ± h−

Rj + Rj−1

)

. (38)

Note that these formulae reduce to the more familiar form when h+ = h− = ∆R. The

intermediate timestep velocities (vr)
n+1/2
j±1/2 are taken as the mean of the previous timestep,

and those determined during the current timestep. In the case of no structural evolution,

these velocities remain constants. Generally, the velocities vr in the above equations are

assumed to be defined at bin centers, whereas in our Lagrangian scheme they are defined at

bin edges. Since we define bin centers as the mean of the bin edge locations, we do the same

for the velocities in Eq. (37). Finally, the new total fractional mass that includes changes

from both the direct and divergence terms is found from

(fe)
n+1
j =

(fe)
n+1
j,dirσ

n+1
j,dir + ∆q

σn+1
j

, (39)

where ∆q = qn+1
j − qn

j is the divergence of feσ, and σn+1
j is the new surface density that

includes both direct and divergence contributions (cf. Eq. [36] Cuzzi and Estrada, 1998). Of

course, if structure is held fixed, σn+1
j,dir = σn+1

j = σ. We find the method above numerically

stable (although see Sec. 3.1) for much larger timesteps than the code generally allows (see

Sec. 2.3.3).

2.3.3 Time step restrictions

The structural evolution part of the BT code is explicit in nature and thus requires adherence

to stability criteria. The BT code uses a variable timestep ∆t(t) which is determined at each
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step by considering several conditions. The most basic Courant condition that arises from

consideration of Eq. (7) requires that

∆t . min

{

2wj
∣

∣(vr)
n
j+1 + (vr)

n
j

∣

∣

}

, (40)

where the bin width wj = bj+1 − bj is measured from bin edges, and an average of the total

drift velocities vr (which are also defined at bin edges) is used. The condition essentially

demands that the surface density in the bin being evaluated is not receiving information from

beyond the boundaries of the spatial regions defined by each grid cell. A second condition

that we impose is that of the viscous Courant condition. Code stability requires that the

minimum timestep be shorter than half the shortest viscous diffusion time tν = R2/3ν across

an annular cell, namely

∆t . min

{

1

2

[

2w2
j

3(νj+1 + νj)

]}

, (41)

where the viscosities νj are also evaluated at bin edges. The viscous contribution to the drift

velocity is present in vr, however the stability criterion in Eq. (40) is more important when

considering the inviscid case which we generally do not consider. It is a normal consequence

that radial drift can cause Lagrangian bin cells to become quite narrow which can easily cause

either of the above conditions to be violated and require an unreasonably small timestep.

However, our rezoning scheme at every ∆t will always prevent this (see Sec. 2.3.1).

A last condition that the BT code must adhere to is
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∆t . min

{

σn
j

(σ̇im)jY

}

, (42)

which essentially states that the timestep must be less than the local gross erosion time of

the ring. This obviously applies in situations where the surface density of the ring is very

low (but not zero) such as near gaps or true edges. Radial cells that are empty (σ = 0)

are not considered in setting ∆t. At the beginning of each loop through time, these three

conditions are checked, and the new ∆t is taken to be the minimum of these, or a default

maximum timestep size which is chosen at the beginning of our simulation, generally ∆tmax =

0.00005 − 0.0001 tG.

2.3.4 Numerical technique for calculating Λ’s and Γ’s

Numerical integration of the loss and gain integrals (Sec. 2.2.4) represent the most computa-

tionally intensive piece of the BT code. The integration over θ is done using a Nθ = 21 point

simpson rule evenly spaced in cos θ, while integration over φ is done using two Gaussian

quadrature points Nφ over the azimuthal angle φ = π/2 to π (the Cuzzi and Durisen [1990]

angular distribution function possesses reflection symmetry through the planes defined by

φ = 0 and φ = π/2, see Fig. 2, Durisen et al., 1992). Since we primarily use a power-

law representation of the velocity distribution (Sec. 2.2.7) the x-integration is done using a

trapezoidal rule with Nx = 10 − 20 quadrature points evenly spaced in log x.

The value of the θ-integrand at a given Simpson point is determined by interpolation over

a fine grid of the values for the fractional mass, optical depth and optical depth-dependent

functions. Prior to each numerical integration, we preinterpolate a much finer mesh of points

44



Nmesh >> N where the array index of the mesh is chosen to be directly proportional to radial

position. This allows for integrands to be evaluated using a mesh value that is closest to the

actual value of R or R′ (Durisen et al., 1989). This procedure somewhat mitigates the costs

of doing the angular integrals which would require ∼ Nφ × Nθ × N distinct searches and

interpolations otherwise. Our standard value for Nmesh = 105. Use of the fine mesh provides

a boost to computational speed at the expense of a small loss in accuracy.

Despite efforts to make the integrations of the losses and gains more optimal and efficient,

significant improvements in speed are best achieved through parallelization of the Γ and

Λ integration subroutine. This was done using the language independent communication

protocal Open MPI (Message Passing Interface). The ring composed of N annuli is divided

into np chunks, where np is the number of processors being utilized, with each processor

executing its ‘piece’ of the loss and gain integration loops. Once completed, a communication

step is called to

Since the numner of operations involved in computing the loss and gain integrals scales

as N , the speed up in code execution scales as ∼ np on a single node....

Unless otherwise noted, all runs for this paper were done using eight processors in par-

allel...deemed sufficient for the cases we explored.

45



3 Ballistic Transport Simulations

3.1 Comparison to Previous Work

In this section we present some tests of the numerical code. A natural starting point for

demonstrating the the new code’s utility is to reproduce the results of earlier workers.

Durisen et al. (1992) modeled the relatively sharp B ring edge and its transition into a

low constant optical depth “C ring” and demonstrated that the B ring inner edge (and

likewise the similar inner A ring edge) can be maintained at its presently observed width

through a balance between the sharpening effects of ballistic transport, and the ring vis-

cosity’s tendency to broaden structure. Durisen and colleagues explored a range of impact

yields, and ejecta speed distributions f(x) with different choices for the lower bound xb in

order to find a range over which the B ring edge could be maintained over long timescales.

Here, we focus on a few specific cases choosing the same parameter values from Durisen et

al. (1992).

As mentioned in Section 2.2.5, Durisen et al. scaled their models through a relationship

between the mass surface density and optical depth at R = 1.55 RS such that σ = σ(τ = 1)τ

where σ(τ = 1) = 96 g cm−2 . Since in code units, the surface density is scaled by this

value, plots of optical depth translate to plots of surface mass density. This scaling then

represents a constant opacity model for the rings with an effective value κ = 0.104 cm2 g−1

. This scaling, along with the assumption that the ring particles everwhere can be described

by a r−3 powerlaw for particle radii between 3 cm ≤ r ≤ 3 m is consistent with mostly icy

ring particles with density 1.12 g cm−2 . Given this scaling, the initial conditions for the B
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ring edge models has the optical depth (and likewise σ) distribution

τ(R, 0) = 0.050 +
0.950

e(1.52RS−R)/D + 1
, (43)

where the parameter D = 0.0015 RS which corresponds to an edge with of ∼ 90 km compa-

rable to what is observed.

In Figure 2, we show a calculation for B ring inner edge model with Y = 3 × 105, a

powerlaw ejecta speed distribution with a lower bound xb = 2 × 10−4, and a Wisdom and

Tremaine viscosity with weighting factor fν = 1 (see Fig. 10a, Durisen et al., 1992). For

these choices of parameters, a gross erosion time is around 4500 years. The simulation uses a

timestep of ∆t = 0.0025 tG and the entire run, which corresponds to a physical timescale of

4.5×106 years, took 35 minutes of parallel CPU time. The black curves correspond to selected

times during the evolution of the ring structure, while red curves are the corresponding

fractional mass of pollutant. Over the first ten gross erosion times or so, the ring edge

steepens to a roughly steady-state slope. The formation of a ramp at the base of the edge

can be seen to develop between the 9 tG and 35 tG curves, becoming quite prominent by the

end of the run at 99 tG. The reason for this is that there is a very high order of cancellation

between direct mass exchanges and radial drifts due to ballistic transport in this region. The

ramp’s growth is produced by the uncanceled residual which is essentially independent of

the ring viscosity there (Durisen et al., 1992). Just inside the inner edge the formation of a

“hump” is also observed which may likely be undulatory structure that appears for higher

yields (see Fig. 4) which is more easily surpressed by viscosity for this value of Y . Also

observed and shown in more detail in Figure 3 are the undulations that emanate from the
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base of the ramp. These undulations have wavelengths that are long because they are echoes

of the growing ramp structure which itself is quite broad. As the ramp grows, so too does

the wavelength of the low optical depth region undulations. In addition, these undulations

are not so easily surpressed because the viscosity is much weaker here (cf. Eq. [22]).

Also plotted in Figures 2 and 3 are the fractional mass in the rings for the selected

evolutionary times. Initially, the ring begins with no extrinsic pollutants (fe(R, 0) = 0)

everywhere in the rings. Naturally, the fractional mass differences between the high optical

depth B ring and low optical depth C ring are quite pronounced with a sharp transition across

the B ring inner edge. However, as the simulation evolves, the differences in composition

between the regions becomes less so, with the sharpness of the transition smearing out

over time due to advective effects, an effect found by Cuzzi and Estrada (1998) in their

compositional evolutions. The contrast though between low- and high-τ regions is muted

somewhat by the choice of a constant κ across the rings. The Cuzzi and Estrada (1998)

profile for the opacity given in Eq. (19) would produce higher contrast though its simple

form cannot be applied to the structurally evolving models because it relies on a fixed position

for the edge. In Figure 3 the most notable thing to notice is that the relative position of

the decrease in fractional mass begins further inward in the ring with time. This would

seem to suggest that the rings are brightening more and more inward with time, but this

rather reflects that darkening is occurring less quickly as the ramp grows in mass (and radial

extent) relative to regions inside of it.

In Figure 4, we reproduce a compilation of simulations over 104 tG for the B ring edge

model for various combinations of Y and xb (cf. Durisen et al., 1992, Fig. 15). The dashed
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curve corresponds to the case for Y = 3 × 105 presented previously with the run extended

for five more gross erosion times. The dotted and solid curves represent cases with yields

of Y = 1 × 106 and 2 × 106, respectively, and a lower bound in the velocity distribution of

xb = 1× 10−4 which corresponds to a velocity of ∼ 2 m s−1 . These runs have also have the

number of bins increased to 1500 versus the 1000 used in the Y = 3× 105 case, as was done

in Durisen et al. (1992). Also plotted in Figure 4 is the optical depth profile obtained with

Cassini from the Alpha Arae occultation (Rev 032) for comparison. The main difference

between the two latter cases is that the Y = 1 × 106 case achieves a steady-state sharpness

with an absence of high-τ undulations, while increasing the yield by a factor of two quite

readily produces nonlinear growth of undulations in the inner B ring. The corresponding red

curves are the fractional masses for each run. The highest yield case has the least amount

of darkening which may seem counter-intuitive, but this is because the exposure time is

much shorter. For the higher yield runs, the physical timescale for exposure is 1.4× 106 and

6.8 × 105 years, respectively.

From the standpoint of structural evolution, we find no qualitative differences between

our simulations and those of Durisen et al. (1992). The differences that do appear upon

close inspection of our simulations and those of Durisen et al. may be due mostly to order

x2 errors which would be most prominent near the sharp edge. We note that the simulations

of Durisen et al. (1989;1992) used an erroneous expression for the angular momentum of

an ejectum h that propogated to the expression for the function A(x, θ, φ) (see Sec. 2.2.4)

used in their code (Durisen et al., 1996). Here we use the corrected expression for A that

is derived using the appropriate h. Furthermore, we found that the cited timestep size used
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by Durisen et al. (∆t = 0.0025 tG) was too large, especially for the higest yield case. These

runs were done with a timestep of ∆t = 0.0002 tG which is at the upper end of what we

generally choose for our models. Thus, for example, the Y = 2 × 106 case took ∼ 300− 400

minutes of dedicated parallel CPU time.

4 Conclusions and Future Work

Isotropic and Retrograde Distributions. Disruptive collisions tend to fragment the target ring

particle into many pieces, leading to ejecta distribution that differs from the non-disruptive

(cratering) case in terms of yield, velocities and directionality. In the cratering case, yields are

large compared to the impactor, but represent a relatively small fraction of the target mass.

In the disruptive case, the “yield” may consist of most (or even all) of the target particle

with most of the mass located in the largest fragments (e.g., Nakamura and Fujiwara 1991).

Since most of the kinetic energy is carried away by a very small amount of mass moving

away at high speeds (Benz and Asphaug 1999), most of the ejecta mass moves at smaller

velocities than in the non-disruptive case, with the largest fragments having the lowest

velocities. Lower relative velocities imply that the throw distances of most material in the

disruptive case is much smaller. Also, unlike the non-disruptive case where the cratering

impact tends to “nudge” the ring particle while ejecta is backscattered (into the super-

Keplerian direction), the disruptive particle ejecta may mostly forward scatter (Paolicchi et

al. 1989) if the impactor-to-target ratio is sufficiently large enough to alter the momentum

of the target. If so, this would tend to potentially lead to ejecta orbital velocities that are
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less than the local Keplerian speed. Thus a considerable fraction of disruptive collisions

could result in ejecta distributions in which a signficant fraction of the mass may land at

radii inwards of their ejection point. Projectiles which only marginally disrupt may only

result in an isotropic velocity distribution (Nakamura and Fujiwara 1991). Even this would

have a significantly different angular distribution than the super-Keplerian distribution now

assumed.

This combination of effects allows the sub-Keplerian or isotropic ejecta to play a signifi-

cant role in evolving local ring structure. For example, the linearity of the “ramp” features

seen at the B/C and A/Cassini division boundaries can be adequately accounted for by

strongly prograde ejecta with relatively low yields and high ejection velocities (Durisen et

al. 1989; 1992; CE98). However, the sharpness of the inner B ring edge and the develop-

ment of undulations just outside the edge suggest a component with considerably higher

yields and lower ejection velocities that can be associated with disruptive impacts (Durisen,

private comm. 2008). Durisen et al. (1992) speculate that a suitable combination of both

distributions can be used to better match the observed optical depth features in the inner B

rings (and presumably in other regions of the rings as well such as the inner A ring edge).

One other example of where the difference between super- and sub-Keplerian velocity

distributions may be important can be seen in the C ring plateaus (Fig. 1). The characteristic

outward-increasing slope in τ seen in all the plateaus outside of 87500 km is a well known

signature of BT due to prograde ejecta. Sub-Keplerian (or even isotropic) ejecta would lead

to the opposite (or flattened) trend, which is seen in all the plateaus inside of 87500 km. An

observation suggesting that disruptive impacts may be playing a role is recent Cassini Radio
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Science (RSS) data that imply there are fewer ∼ 1 − 3 cm-sized particles in the plateaus

than outside the plateaus (Marouf et al. 2008; Cuzzi et al. 2009). This is significant because

∼ 1 cm particles may be the size most easily disrupted by meteoroid bombardment, if the

peak in the micrometeoroid flux mass distribution indeed occurs around a radius of ∼ 100.

One can crudely estimate the ratio of the mass of the largest fragment to the original target

mass fb ∼ µQ∗/v
2
im (e.g., Melosh, 1989) where µ ∼ 106 is the target/impactor mass ratio,

and Q∗ ∼ 106 ergs g−1 (e.g., Stewart and Leinhardt 2009) is the fragmentation energy per

unit mass. Including gravitational focusing, the impact velocity vim ∼ 30 km s−1 in the C

ring, giving fb ∼ 0.1, well within the regime of catastrophic breakup. If so, the implication is

that disruptive impacts may occur more prominently in the regions away from the plateaus.

Finally, recent work that uses the results of New Horizons to estimate the flux of EKB

dust at Saturn suggests that this may be an equally important source of extrinsic material

(Poppe et al., 2010, Poppe and Horányi, 2012). Furthermore, though the mass peak for this

population (a few microns) is likely too small to lead to disruptive impacts, these authors’

models indicate that the ejecta distributions produced from EKB dust grain impacts could

likely be more isotropic (Poppe, priv. comm. 2012) providing another important element to

our BT models.
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